

Предоставляет возможность испытать изменения

БАКИ (БУФЕРНЫЕ) ТЕПЛОВОГО БАЛАНСА СЕРИИ ВБ.. ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ

Во всех применениях охлажденной воды, где требуется увеличение объема воды системы...

Практики индустриального охлаждения

Системы охлаждения машин Все процессы практики охлаждения, требующие точного контроля температуры

Применение охлаждения с целью кондиционирования

Высокие структуры - здания, деловые центры, отели Структуры, охлаждаемые зимой - торговые центры, фабрики Все системы охлаждения, требующие разделения теплообменником...

 Tanpera

 Баки

 теплового

 баланса

 Объем 100-5000 литров

Легкий мо<mark>нтаж</mark>

Сперегородкой бака

Самоизолирующийся

ОБЩИЕ СВОЙСТВА

Специально проектированный и произведенный бак для увеличения объема воды системы во всех практиках охлажденной воды, где требуется дополнительный объем воды.

Предложено к пользованию наших клиентов в различных объемах от 100 литров до 5000 литров.

Внутри находятся разделительные перегородки, количество которых соответствует объему бака, чтобы обеспечить однородное распределение тепла и предотвратить расслоение тепла. За счет этого воздух, находящийся в воде, легко отделяется и спускается с верхней части бака.

Предоставляется полностью в изолированном виде, чтобы снизить до минимального уровня потерю энергии.

Внешняя поверхность защищена против коррозии с двойным слоем антикоррозионной краски.

Готов к монтажу к системе с соединительными портами с фланцами, размеры которых соответствуют объему бака

Имеет соединительные порты для воздушного вентиля и выпускного клапана.

Перед поставкой к клиенту, испытывается под давлением, которое в 1,5 раза превышает рабочее давление.

ПОЧЕМУ НАДО ИСПОЛЬЗОВАТЬ БАКИ ТЕПЛОВОГО БАЛАНСА...

Для правильной и продуктивной работы системы охлаждения с комфортной или индустриальной целью общий объем воды в цикле должен быть выше определенного количества. Это количество определяется в зависимости от мощности и точности требуемого контроля. Если общий объем воды системы меньше этого количества, то надо увеличить тепловую мощность, добавив в цикл ТБак теплового баланса серии TANPERA-BF.

Средняя температура воды в системах охлаждения, вместе с изменениями, образовавшимися в нагрузке охлаждения, меняется в зависимости от пропорции покрытия мгновенной нагрузки со стороны мощности охлаждения. Если мгновенная нагрузка ниже мощности охлаждения, то температура упадет, если выше, то повысится.

Но, во многих практиках, владельцы предприятий не хотят больших волнений температуры воды, отправленную в систему, и стараются его держать в определенных предельных величинах. Так как большие волнения в средней температуре воды и параллельно этому в температуре воды идущей в систему,

- **В системах кондиционирования** затруднит контролирование температуры помещения, и в связи с этим обеспечения требуемого уровня комфорта;
- А особенно в **системах индустриального охлаждения**, которые требуют точного контроля температуры, может стать причиной важных материальных убытков и потерь.

3

В практиках, где общая нагрузка охлаждения является переменной, контролируя мощность охлаждения, возможно, предотвратить в определенной мере волнение средней температуры воды. Как правило, этот контроль обеспечивается пропорциональным или постепенным изменением мощности группы согласно мгновенной нагрузке либо включая/выключая по мере потребности компрессор. Пропорциональный или постепенный контроль возможен только для групп с определенными особенностями и получаемая польза от него ограничена. А количество переключений компрессора из-за технических ограничений не может превышать несколько раз в час.

С другой стороны, общий объем воды, циркулирующей в системе, определяет тепловую мощность системы. Чем больше количество воды, столько же тепловой энергии она может содержать, значит, влияние изменения нагрузки будет в одинаковой пропорции меньше над уровнем средней температуры в системе. В зависимости от величины этой тепловой мощности, уменьшается потребность в контролировании мгновенной мощности группы охлаждения, чтобы предотвратить волнение температуры входа/ выхода воды испарителя, кроме этого будет предотвращен чрезмерное переключение компрессора.

OOO «ТИ-СИСТЕМС» ИНЖИНИРИНГ И ПОСТАВКА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ Интернет: www.tisys.ru www.tisys.kz www.tisys.by www.tesec.ru www.tu-системс.pф Телефоны: +7 (495) 7774788, 7489626, (925) 5007155, 54, 65 Эл. почта: info@tisys.ru info@tisys.kz info@tisys.by

РЕКОМЕНДАЦИИ ПРИ ОПРЕДЕЛЕНИИ ОБЪЕМА

Есть ли потребность в баке теплового баланса в системах охлажденной воды, а если есть потребность, то объем бак теплового баланса серии TANPERA-BF должен быть рассчитан по нижеприведенному методу.

Необходимый минимальный объем воды (л) = Общая мощность охлаждения (кВт) х В (л/кВт)

При расчете необходимого **минимального объема воды** можно использовать приведенные здесь коэффициенты, рекомендованные со стороны производителей групп охлаждения.

Далее, необходимо найти объем активной воды системы. Объем необходимый учитывать здесь, это объем воды, участвующий в циркуляции внутри испарителя даже в случае самой малой нагрузки. Когда работает с низкой нагрузкой, большинство из них не будет участвовать в активном объеме, поэтому не надо включать в этот расчет объемы воды аппаратов (или зон, оставленных вне циркуляции), которые обходятся со стороны автоматических клапанов. На практике будет безопасным решением включить в расчет только объемы воды труб в системе. Рядом приведены объемы воды на каждый метр для стальных труб, использованных в механической системе.

	** A 1 1
Вид применения	В
Применения общего комфорта	6
Применения, требующие точного контроля температуры (процессы и т.п.)	10

Диаметр трубы (дюйм)	Объем воды (л/м)			
1/2′′	0,2			
3/4′′	0,3			
1''	0,5			
1 1/4"	0,8			
1 1/2"	1,3			
2''	2,1			
2 1/2"	3,1			
3''	4,8			
4''	8,3			
5′′	13,0			
6''	18,8			
8''	32,4			
10''	51,1			
12"	72,8			

Объем бака теплового баланса, определяется вычитанием объемы воды системы из необходимого объема воды.

Объем бака теплового баланса (л) = Необходимый минимальный объем воды -Активный объем воды системы

Если в результате этой операции получили положительное значение, то надо использовать бак теплового баланса и выбрать бак с объемом, превышающим найденное самое ближайшее значение. Если определенная потребность превышает 5000 литров или есть ограничения, связанные с размещением, то в системе можно использовать несколько баков.

Пример расчета

В системе охлаждения процесса, требующего точного контроля температуры и общая мощность охлаждения составляет 700 кВт, находятся стальные трубы с общей длиной 550 м, которые не обходятся со стороны автоматических клапанов. 150 метров этих труб имеют диаметр 6 дюймов, 1000 метров 4 дюйма, 200 метров 3 дюйма. Определим если потребность в баке теплового баланса в этой системе

Необходимый минимальный объем воды = $700 \text{ кВт} \times 10 \text{ л/кВт} = 7000 \text{ л}$ Объем активной воды системы = $(150 \times 18,8) + (100 \times 8,3) + (200 \times 4,8) = 4610 \text{ л}$ Объем бака теплового баланса = 7000 л - 4610 л = 2390 л

Результат: Необходимо использовать 1 штук бак теплового баланса типа TANPERA-BF 2500/10-V с объемом 2500 л.

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ

Так как бак теплового баланса серии TANPERA-BF используются с целью предотвращения чрезмерного волнения в температуре воды, идущей в систему и препятствовать чрезмерного переключения компрессора группы охлаждения, место бака в цикле охлажденной воды должно соответствовать его цели применения в системе.

В практиках типичного комфорта, где более важным является функция предотвращения чрезмерного переключения компрессора бака теплового баланса, рекомендуется установить бак перед группой охлаждения.

полезным установить бак после группы охлаждения и перед системой, так как основной целью здесь является более точный контроль температуры уходящей воды.

Важное примечание: Если в системе будет использовано несколько баков, то рекомендуется эти баки подсоединить друг другу не параллельно, а последовательно, чтобы взять под гарантию обеспечения хорошей циркуляции без короткого цикла.

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ и РАЗМЕРЫ <u>МОНТАЖА</u>

Баки (Буферные) Теплового Баланса Серии ВҒ..

Код типа бака теплового баланса – Общая вместимость бака (литров)

Номинальное рабочее давление (бар)

Позиция; V: Вертикальное, H: Горизонтальное

Кодирование изделия

TANPERA-BF 1000 / 10 - EV

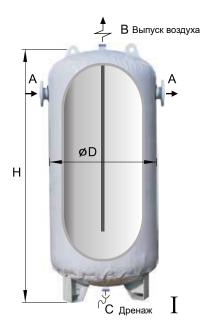
Техническая Спецификация

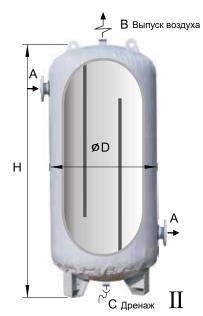
Объем : 100 — 5000 литров

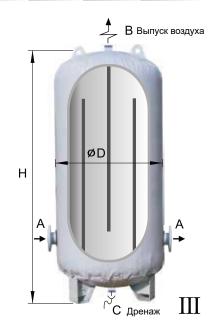
Использование : горячая вода, не превышающая 90°C

Рабочее давление : 10 бар

Позиция монтажа : Вертикальный (по выбору: Горизонтальная)


Покрытие : два слоя антикоррозийной краски с внешней стороны


Теплоизоляция : мягкий полиуретан с открытыми ячейками и толщиной 80 мм


Защитная оболочка : Винил

РАЗМЕРЫ МОНТАЖА

Тип аппарата	Структурная группа	Объем Литров	ø D mm	H mm	Соедин А	ительны В	е порты С	Собственная масса Кg
BF-100/10-V	I	100	550	1150	DN32	1/2"	3/4"	60
BF-300/10-V		300	750	1300	DN50	1/2"	3/4"	105
BF-500/10-V		500	900	1550	DN65	1/2"	1"	180
BF-800/10-V		800	900	2150	DN80	1/2"	1"	230
BF-1000/10-V	п	1000	1000	2110	DN100	3/4"	11/4"	310
BF-1500/10-V		1500	1150	2450	DN125	3/4"	11/2"	480
BF-2000/10-V		2000	1250	2350	DN125	3/4"	11/2"	580
BF-2500/10-V		2500	1450	2300	DN150	3/4"	2"	670
BF-3000/10-V	ш	3000	1450	2700	DN150	3/4"	2"	850
BF-4000/10-V		4000	1700	2700	DN200	3/4"	2"	1120
BF-5000/10-V		5000	1700	3100	DN200	3/4"	2"	1410

